如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(Ⅰ)证明:SD⊥平面SAB;
(Ⅱ)求AB与平面SBC所成的角的大小.
我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中 a 的值;
(Ⅱ)若该市政府希望使 85%的居民每月的用水量不超过标准 x(吨),估计 x 的值,并说明理由;
(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)
(Ⅰ)若 ,求k的值;
(Ⅱ)求四边形AEBF面积的最大值.
(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.