(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[1,e]上的最小值.(其中e是自然对数的底数)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:1是g(x)的唯一极小值点;
(Ⅲ)若存在a,b∈(0,π),满足f(a)=g(b),求m的取值范围.(只需写出结论)
(Ⅰ)若数列1,x,y,7为“U﹣数列”,写出所有可能的x,y;
(Ⅱ)若“U﹣数列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
(Ⅲ)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1 , a2 , …,an0 , 记M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs这s个数中最大的数,求M的最小值.
试题篮
0